How technology can help utilities mitigate the impacts of climate change

by JD Amick, Contributor

As the global effects of climate change become more and more apparent, the impacts of extreme climate and weather events are increasingly taking their toll on infrastructure systems within the United States. The Department of Energy’s Argonne National Laboratory is using climate modeling and infrastructure science capabilities to provide actionable information to companies, agencies, cities, and utilities to help safeguard their infrastructure in the face of these challenges for decades to come.

While global climate modeling data is readily available, Argonne is using supercomputing capabilities combined with climate modeling and infrastructure science expertise to take that data and turn it into higher resolution, local -scale climate impact models.

“Argonne takes this a step further,” explained Tom Wall, Senior Infrastructure and Preparedness Analysist and co-leader of Argonne’s Climate Impact Data and Decision Support effort. “Our team at Argonne takes these raw climate variables and turns them into climate impact data tailored to the specific needs of a particular company or agency.”

Downscaling big data

The first task in the development of this climate impact data is to “downscale” the global models that display data on a scale of 100-150-km blocks.

As Atmospheric and Earth Scientist Jiali Wang describes it, “there are two ways to take low-resolution global and regional climate models and localize them to a neighborhood level: statistical downscaling and dynamic downscaling.”

Statistical downscaling is used to form statistical relationships between global/regional climate models and local observations to “back-cast” historical climate trends of a particular area in order to infer projections about that area’s future climate.

While this method of downscaling does not require much relative computing power, and is therefore widely available, it has significant shortcomings.

“It functions on the assumption that these statistical relationships will remain constant over time,” Wang said. “But this isn’t the case. In the face of climate change, we are seeing these relationships and distributions change over time.”

At Argonne, the climate modeling team uses dynamic downscaling to produce high-resolution climate models on a scale of 12-km blocks. Dynamic downscaling refers to using atmospheric physics- and chemistry-based models to dynamically extrapolate future regional climate, in order to produce high-resolution, “neighborhood-scale” projections.

Data-crunching at warp speed

This is a massive amount of data, however, and it is processed to create hourly climate projections for the next several decades. One year of these hourly projections would take more than 4,000 hours of computation time on a standard computer. Argonne’s supercomputing capabilities allow the climate modeling team to process this data on a large scale at incredible rates, finishing more than 50 million total core hours of computing in mere months.

“We are using these capabilities to explore further downscaling to 4-km blocks to improve the model’s performance, reduce bias, and boost our overall confidence in future projections,” Wang said.

In order to arrive at their conclusions, Argonne researchers are using a combination of modeling systems such as the Weather Research and Forecasting (WRF) model and the WRF-Hydrological (WRF-Hydro) system for modeling regional climate at the 12-km scale and inland flooding due to precipitation down to even the 200-m scale. Then the researchers coupled those models with the Advanced Circulation Model (ADCIRC) for modeling coastal flooding due to storm surge down to the 50-m scale to create the detailed, high-resolution “neighborhood” modeling.

Putting the model into practice with AT&T

Argonne recently collaborated with AT&T, using its climate resiliency science capabilities to analyze and address issues with AT&T’s network infrastructure in the Southeastern United States, a region that has been hit with some of the largest hurricanes and other extreme weather events in recent history.

Such natural disasters have cost AT&T $847 million since 2016, according to a recent article by CNBC. As part of this collaboration, AT&T paid Argonne $375,000 to create a Climate Change Analysis Tool to model the impacts of coastal and inland flooding, as well as wind for the coming 30 years in Florida, Georgia, North Carolina, and South Carolina.

Moved by strong concern for repeated losses from similar natural disasters in the Southeast, AT&T worked with Argonne to identify this region as the target for developing the climate impact model. Throughout this process, Argonne helped determine what data would be useful for AT&T in terms of safeguarding its infrastructure.

“We needed to provide more than just information on precipitation values,” explained Eugene Yan, Principal Scientist in Earth Science. “We had to bridge the gap between these complex models and these industries by showing how climate change would directly impact their network infrastructure.”

The team used the dynamically downscaled climate models to illustrate the impact of extreme climate change in the future. In order to do this, the team used generalized extreme value distributions to identify what “extreme” weather might look like in the coming decades and with what frequency it might occur, be it extreme winds or flooding.

For instance, the impact of extreme wind levels is critical information when designing and building new cell towers. These impacts extend beyond the placement of the cell tower to the structure of the very tower itself, where wind intensities may vary greatly between the base of the tower and the top. These impacts can be used to project future wind loading on cell towers, giving structural engineers more crucial information for their designs. The high-resolution, “neighborhood” level climate impact modeling that Argonne is producing allows for this kind of detailed climate resiliency analysis.

Extreme heat is equally dangerous for a network infrastructure, as well as electrical infrastructure. Difficulties cooling generators and transmitting electricity, and the inherent increased demand for electricity as temperatures rise, “can deliver a “Ëœone, two, three punch’ to the electric sector,” Wall elaborated. “The ability to provide detailed impact modeling for extreme heat as well makes this tool incredibly useful for utilities and communications companies across the entire country.”

Argonne is currently working with AT&T and other parties to expand the Climate Change Analysis Tool to encompass the impacts of forest fires and other extreme climate effects and weather events.

“This work goes beyond the physical structures themselves and potential economic losses,” Wall said. “At the core of any engineering work is a commitment to public safety.”

Communication services, utilities infrastructure, physical infrastructure, are all critical to safety and relief efforts during natural disasters and weather emergencies. “The Climate Change Analysis Tool is crucial for preparing and safeguarding this infrastructure and these services in the decades to come,” Wall said.

JD Amick is a freelance writer based in Chicago. 

Organizations interested in learning how they might tap into Argonne’s expertise, facilities, and tools to unlock technical challenges and seize opportunities—including tools to help safeguard their infrastructure from climate events—should contact

Reliability, incident response and well as data analytics are all important topics at DISTRIBUTECH International. Mark your calendars for next year’s event, which takes place in San Antonio, Texas, January 28-30, 2019.

Previous articleTendril buys utility customer engagement firm EnergySavvy
Next articleGMP partners with Tesla to provide batteries for all
The Clarion Energy Content Team is made up of editors from various publications, including POWERGRID International, Power Engineering, Renewable Energy World, Hydro Review, Smart Energy International, and Power Engineering International. Contact the content lead for this publication at

No posts to display